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Publicly available mass spectrometry (MS)-based proteomics 
data have grown exponentially in terms of the number of data-
sets and amount of data1. This is because high-throughput pro-

teomic studies generate a vast pool of fragmentation spectra. Each 
spectrum contains characteristic peak patterns that appear due to 
the fragmentation of a given peptide. These peptides are used to 
study the proteins contained in the biological sample. It might seem 
obvious to apply deep learning to solve various problems with this 
wealth of data, but the direct application of deep learning to frag-
mentation spectra has not yet sparked in the community. Instead, 
the MS wet lab workflow is usually followed by a conventional data-
base search2. In a search, each acquired mass spectrum is scored 
against a list of candidate peptides from in silico digested proteins. 
For each peptide candidate, a theoretical spectrum is constructed 
and compared to the acquired spectrum3.

The identification of spectra remains challenging, as proteins 
are often either mutated or carry post-translational modifications 
(PTMs). The latter are essential for various biological processes, 
and protein phosphorylation is an important PTM that regulates 
protein function and facilitates cellular signalling4,5. Various sophis-
ticated algorithms exist to cope with the challenges that arise from 
PTMs and mutations, but these algorithms still require protein 
databases6–9. Some attempted predictions, for example to detect a 
PTM, are based on only the spectrum itself and are therefore inde-
pendent of a database. However, current approaches are based on 
engineered features and classical machine learning10,11. A fragmen-
tation spectrum can contain PTM-specific patterns (for example 
relations between peaks in a spectrum) that coexist with fragments 
resulting from the plain peptide sequence12. These patterns can 
even appear in an equivariant manner, that is, they can pinpoint the 

position of a PTM within the peptide sequence, but their presence 
alone can reveal the PTM itself13. Most importantly, the detection 
of a PTM can be separated from the sequence retrieval, and a deep 
learning approach would account for the variety and complexity of 
PTM-specific patterns.

Aside from this, there is a plethora of open challenges in 
MS-based proteomics, including the detection of PTMs12, predic-
tion of phosphosite localization scores13, detection of cross-linked 
peptides14, characterization of the dark matter in proteomics by 
assigning spectrum-identifiability scores15, augmention of features 
for post-search rescoring16, identification of biomarkers17 and detec-
tion of anomalies including non-proteinogenic amino acids18, to 
name a few. These may be solved by a deep learning approach when 
the underlying model is able to gather biochemically relevant rea-
soning from a large pool of spectra. As a proof of concept, we tackle 
three of the challenges mentioned above, namely the detection 
of phosphorylated peptides based on their spectra (AHLFp), the 
detection of cross-linked peptides based on their spectra (AHLFx) 
and an improved rescoring of peptide spectrum matches.

Regarding biological data, deep learning approaches on imag-
ing or sequential data are very successfully published at a high 
frequency. We argue that this is mainly due to the straightforward 
applicability of findings from computer vision and natural language 
processing to medical image19 or genomic data20. Interestingly, there 
are at least two applications of deep learning models that are well 
received by the proteomics community, namely fragment intensity 
prediction and de novo sequencing. Yet, the models that are used for 
both applications are built around the concept of having a peptide 
sequence (as input, output or intermediate representation) rather 
than the spectrum alone. A recurrent neural network applied to a 
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Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. 
Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial 
sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown 
patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we 
introduce ‘ad hoc learning of fragmentation’ (AHLF), a deep learning model that is end-to-end trained on 19.2 million spec-
tra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values 
and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by 
detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum 
without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 
9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in 
rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false 
discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used 
in protein structure analysis, with an AUC of up to 94%.
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peptide sequence predicts fragment intensities as implemented in 
pDeep21 and Prosit22. Similarly, a recurrent neural network facili-
tates de novo sequencing by guiding a dynamic programming 
approach with a learned heuristic of peptide sequence patterns in 
the case of DeepNovo23,24 and PointNovo25. These approaches also 
use convolutions or t-nets, but remain unable to characterize basic 
fragmentation patterns on their own, that is, the various ion types of 
amino acids are built-in and not trainable parameters.

Connected to this is the lack of interpretability for these models 
because the built-in features prevent any further interpretation alto-
gether. Predefined features may reflect the experts’ experience but 
restrict the flexibility of the model and effectively reduce interpret-
ability26. Here AHLF is provided with the entire spectrum to gain 

an unbiased understanding of how peptides fragment and conse-
quently to improve the interpretability of AHLF at the peak level.

To the best of our knowledge, there have been no attempts to 
directly present fragmentation mass spectra to a deep learning 
model and to ad hoc learn fragmentation patterns. Here, ad hoc 
(Latin: ‘for this specific purpose’) learning means that AHLF is able 
to abstract fragmentation patterns from spectra that are essential, 
for example to detect phosphorylated peptides based on their frag-
mentation spectra. The notion of ad hoc learning is covered by the 
term ‘deep learning’ already. However, it emphasizes that our model 
is able to recognize relevant and essential patterns in spectra with-
out ever being explicitly told about them. To the best of our knowl-
edge, current learning-based approaches in the field of MS-based 
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Fig. 1 | Two-vector spectrum representation is memory-efficient but keeps exact m/z locations. a, Top: example spectrum of two hypothetical peaks. 
Bottom: feature representation as two-vector spectrum, for a too large and thus lossy (1 m/z) segment size (yellow) and for a smaller, loss-less (0.5 m/z) 
segment size (blue). b, Trade-off between number of features (top, with a window size of 100–3,560 m/z) and loss of peaks (y axis), depending on the 
chosen segment size (x axis). Note that the striped area at the top (L > 2) of the stacked bars for the two widest segment sizes reflects spectra with more 
than two peaks lost. c, Fragmentation mass spectrum represented in two vectors, namely intensity (top) and m/z remainder (bottom). The two feature 
vectors have 7,200 features in total. From the m/z remainder the original m/z values can be fully recovered. d, Illustration of how long-range associations 
can be learned by AHLF via dilated convolutions. The receptive field grows exponentially with additional layers according to specific dilation rate (left 
box). Learnable associations are highlighted as coloured paths (grey, black, pink and yellow) (see Methods for details). Note that only selected parts of the 
actual network are illustrated here. In parentheses on the right, the actual tensor size and numbers of filters are compared against what is illustrated here 
(without parentheses). One channel of a hypothetical two-vector representation (bottom) with four peaks is shown here, whereas two actual channels 
(Ch1 and Ch2) are presented to the model AHLF. 1D, one-dimensional; conv, convolutional layer; ReLU, rectified linear unit; dense, fully connected layer. 
Hyperparameters of AHLF are summarized in Supplementary Table 1.
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proteomics of similar scope provide masses of amino acids, ion 
types, losses, or combinations thereof to their models before train-
ing, which is not necessary for AHLF. For example, a PTM detection 
would require the learning of modification-specific features, which 
we can further investigate after a model has been trained.

Therefore, we propose ‘ad hoc learning of peptide fragmentation’ 
(AHLF), an end-to-end trained deep neural network that learns 
from fragmentation spectra to perform versatile prediction tasks. 
To perform these challenging prediction tasks, AHLF features a 
framework enabling efficient training on large numbers of fragmen-
tation spectra, the learning of long-range peak associations through 
dilated convolutions, true end-to-end training on spectra due to not 
including domain knowledge, and interpretation of AHLF investi-
gating whether biochemically relevant patterns are recognized.

We evaluate our approach on previously published phosphopro-
teomic data, which include datasets from more than one hundred 
public repositories4. In addition, we validate the results on recently 
published data27–31; in the case of cross-linking data, we use previ-
ously published data to evaluate our transfer learning approach32–34.

We interpret our model by comparing peptide fragments from 
ground truth peptide identifications against feature importance val-
ues for AHLF, which we calculate for each peak per spectrum indi-
vidually on a collection of spectra. This is enabled by applying the 
Shapley additive explanations (SHAP) framework35 to predictions 
from AHLF. In addition, we show that AHLF recognizes biochemi-
cally relevant fragmentation patterns. In this case, we do not require 
annotations from identified peptides beforehand. We achieve this 
by computing pairwise interactions, using Path Explain36, between 
any two peaks per spectrum, and subsequently identify relevant 
delta masses between respective peak pairs.

We demonstrate the broad scope of our approach by applying 
AHLF to a distinct task, namely the detection of cross-linked pep-
tides (AHLFx). Cross-linking is used to study the structure of single 
proteins, multiprotein complexes or protein–protein interactions37. 
Detecting spectra from cross-linked peptides is challenging and 
different from PTM detection, because in this case two peptides 
including the cross-linker molecule are present in the same spec-
trum and need to be detected.

Finally, we show that AHLF predictions improve the number of 
peptide identifications in a rescoring approach. Here, phosphopro-
teomic datasets are reanalysed in a localization-aware open search 

using MSFragger6,38 and then rescored by Percolator16 using AHLFp 
scores. This improves the number of identified peptides at constant 
false discovery rate (FDR). In addition, AHLFp improves the num-
ber of identification at constant false localization rate (FLR) as esti-
mated by LuciPHOr239–41. A similar approach is shown for AHLFx 
on cross-linking data improving the number of cross-linked peptide 
spectrum matches.

Results
AHLF promotes learning of long-range peak associations. A key 
challenge for deep learning on proteomics data is the representa-
tion of spectra. AHLF exploits the sparsity of fragmentation spectra 
to derive a memory-efficient representation that accounts for exact 
peak locations (Fig. 1). In particular, we propose a two-vector repre-
sentation, holding intensity and mass-over-charge (m/z) remainder 
information (Fig. 1a,c, Supplementary Note 1 and Supplementary 
Algorithm 1). The original spectrum can be recovered from  
this representation while the number of actual features is reduced 
(Fig. 1b). Furthermore, the two-vector representation allows the use 
of deep learning models such as AHLF.

In general, peaks of peptide fragments are scattered over an 
entire spectrum. Hence, we design our deep learning model to pro-
mote the learning of associations between any peaks while respect-
ing their location within a spectrum (Fig. 1d). Therefore, we use 
convolutions with gaps, commonly called dilated convolutions. As a 
result, our network has a receptive field that spans the entire feature 
vector. In particular, the receptive field grows exponentially with 
the number of layers facilitated by dilations (Fig. 1d, Supplementary 
Fig. 1 and Supplementary Notes 2 and 3).

AHLFp detects phosphopeptides from fragmentation spectra. 
Here we exemplify our approach on a specific-use case by apply-
ing AHLF to phosphoproteomic data and detecting spectra of phos-
phorylated peptides (AHLFp). We compare our approach against 
PhoStar11, which is a random forest model that includes carefully 
generated phospho-specific features. By contrast, AHLFp was 
applied to the data in a plug-and-play manner as AHLFp did not 
require any domain knowledge beforehand. Rather, AHLFp has to 
come up with domain-specific features on its own, which we further 
investigate by interpreting AHLFp later in this work.

To demonstrate the ability of AHLFp in detecting spectra of 
phosphorylated peptides, we evaluate the performance of AHLFp 
on 19.2 million labelled spectra from 112 individual PRIDE reposi-
tories (PXD012174 (ref. 4)) containing 101 cell or tissue types. The 
dataset is roughly balanced and includes 10.5 million phosphory-
lated and 8.7 million unphosphorylated peptide spectrum matches 
(PSMs). We perform a fourfold cross-validation yielding four 
independently trained deep learning models AHLFp-α, AHLFp-β, 
AHLFp-γ and AHLFp-δ with their respective holdout folds a, b, c 
and d (Supplementary Tables 2 and 3). The following results were 
computed by applying each model to its respective holdout fold. For 
convenience we refer to AHLFp in all cases. We compute binary 
prediction scores as well as balanced accuracy (Bacc), F1-score and 
area under the receiver operating characteristic curve (ROC-AUC) 
for each of the 101 individual datasets. As an aggregation over these 
sets we show mean, median and variance in Table 1 (detailed metrics 
for individual datasets are given in Supplementary Table 5). AHLFp 
showed a better performance on average compared to PhoStar11 in 
the detection of spectra of phosphorylated peptides (for evalua-
tion details, see Methods). For example, AHLFp achieved a higher 
median ROC-AUC than PhoStar (88.48 versus 80.01) while also 
showing lower variances (0.85 for AHLFp versus 2.45 for PhoStar). 
Similarly, AHLFp outperforms PhoStar on the F1-score and Bacc 
metrics. Furthermore, we investigate the robustness of performance 
of AHLF in comparison to PhoStar (Supplementary Note 4 and 
Supplementary Fig. 2).

Table 1 | Performance of models in detecting spectra of 
phosphopeptides

Model ROC-AUC F1-score Bacc

Median

 AHLFp 88.48 83.32 76.80

 PhoStar 80.01 58.38 69.25

Mean

 AHLFp 85.98 74.25 76.06

 PhoStar 80.99 61.32 72.95

Variance

 AHLFp 0.85 4.88 0.93

 PhoStar 2.45 8.33 2.73

Overall

 AHLFp 92.09 85.51 83.68

 PhoStar 91.68 79.89 82.00

Median, mean and variance for ROC-AUC, F1-score and Bacc over the individual datasets are 
shown at the top. Overall ROC-AUC, F1-score and Bacc as calculated over all holdout predictions 
without averaging on the level of cell or tissue types are shown at the bottom. Bold indicates the 
best model performance.
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We validate these findings by performing predictions on other 
phosphoproteomic datasets. We collected five recently published 
datasets containing nonhuman samples. AHLFp was trained on data 
from human samples only (see above). Furthermore, the validation 
data resembles spectra that stem from four different instrument 
types (Supplementary Table 4). AHLFp performs better in four out 
of five datasets; specifically, the ROC-AUC is 9.4% higher on aver-
age (Table 2). PhoStar reaches its best performance on a particular 
dataset (PXD013868) with an ROC-AUC of 0.98 whereas AHLFp 
achieves a comparable ROC-AUC of 0.95. AHLFp appears more 
robust overall as its lowest ROC-AUC reads 0.79; but ROC-AUC is 
down to 0.61 for PhoStar on JPST000703.

AHLFp interpretations distinguish fragment ions from noise. 
Here we investigate whether AHLFp is basing its decision on parts 
of the spectrum that belong to actual fragment ions (peptide-related 
peaks) or rather on peaks that are considered noise ions (ions that 
are not explained by the underlying peptide). Therefore, we con-
sult the original database search results, which assigned a pep-
tide to each identified spectrum. We compare those ground truth 
fragment ions against peaks that appear important to AHLFp for 
each spectrum individually. Hence, we calculate peak-level fea-
ture importance values (SHAP values) for individual spectra and 
compare them to the matching ions from the identified peptide 
(according to database search results). This is shown for a specific 
spectrum in Fig. 2a. For a quantitative comparison, we calculate 
a SHAP-value ratio, which is the sum of SHAP values of matched 
ions divided by the sum of all SHAP values. Intensity ratios are 
calculated accordingly. Both types of ratios are illustrated in Fig. 2a 
and explained in Methods.

A visual inspection of the SHAP-value ratio versus intensity ratio 
for all spectra in the HEK293 dataset indicates that SHAP-value 
ratios seem to be overall higher than their intensity-based counter-
parts (Fig. 2b). This means that AHLFp can distinguish between 
fragment ions and noise ions. This separation of signal and noise 
is not equally prominent throughout different datasets; for exam-
ple, in the OVAS dataset it is less obvious and is therefore shown 
as a counterexample in Fig. 2d,e. To investigate whether this 
signal-versus-noise separation appears throughout datasets, we per-
form a Wilcoxon signed-rank test on the 25 datasets from the first 
fold from the cross-validation splits (fold a and the respective model 
AHLFp-α; see Supplementary Tables 2 and 3).

According to the Wilcoxon test, for 18 of the 25 datas-
ets the SHAP-value ratios are statistically higher than inten-
sity ratios, considering a one-sided significance level of α = 0.01 
(Bonferroni-corrected). This supports our observation of AHLFp 
learning a signal-versus-noise abstraction that is correct in most 
datasets. To check whether these interpretations depend on the 
quality of spectra annotations (Fig. 2b–e), we perform the Wilcoxon 
signed-rank test for six score thresholds ranging from 40 to 140 
(Fig. 3a). Similarly, we check whether the comparison depends on 
considered ion types (Supplementary Note 5). Altogether, in the 

tested situations AHLFp was able to separate fragment ions from 
noise ions for a vast pool of spectra in the majority of datasets.

AHLFp interactions reflect biochemically relevant patterns. To 
investigate whether AHLFp gained further insights (additional to 
the signal-to-noise distinction above) we compute pairwise inter-
actions36 in combination with delta m/z between any peaks. In 
particular, we check whether delta masses that are relevant in the 
context of phosphopeptides are recognized by AHLFp (details in 
Supplementary Note 6). Therefore, we collect the identified phos-
phopeptide spectra from an individual run of the HEK293 dataset. 
We keep spectra that AHLFp predicted as being phosphorylated, 
and calculate pairwise interactions and respective delta m/z for each 
spectrum (Methods).

At first glance, pairwise interactions reveal a set of distinctively 
higher interaction strengths at certain delta m/z values (Fig. 3c,d). 
For example, a prominent interaction at 98 m/z reflects phosphoric 
acid (interaction annotated with ‘*’ in Fig. 3d). To identify the 
other interactions, we search delta m/z including combinations of 
serine, threonine or tyrosine (S/T/Y), phosphoric acid (abbrevi-
ated with ‘*’), and of loss of ammonia (NH3) and/or loss of (H2O) 
subject to charges between +1 and +4 (for detailed stoichiometry, 
see Methods). Hence, a total of 2,352 hypothetical delta m/z were 
tested against the top-30 highest interactions. Of the top-30 high-
est interactions, 15 can be explained with specific delta masses as 
annotated in Fig. 3c,d. This is controlled by assessing the matching 
tolerance with a random baseline and a negative baseline (Fig. 3b 
and Supplementary Note 6).

AHLF improves database search results through rescoring. 
Here we investigate whether predictions by AHLF can be used 
to improve the number of peptide identifications from database 
searches. Therefore, we use AHLFp to assign a prediction score for 
each fragmentation spectrum in PXD014865 and rescore search 
results by using Percolator (Supplementary Note 8). The use of 
AHLFp increases the number of identified peptides by 8.4% and 
phosphopeptides by 15.1% at a constant FDR of 1% (Fig. 4a and 
Supplementary Fig. 6).

Furthermore, we use the rescored PSMs from above and sub-
sequently estimate an FLR by using LuciPHOr2 (Supplementary 
Note 8 and Supplementary Figs. 7, 10–13). At an FLR of 1%, 
AHLFp increases the number of identifications by 30.4%, when 
the LuciPHOr2 HCD model is used (Fig. 4c and Supplementary 
Fig. 7) and by 7.4%, when the LuciPHOr2 CID model is used. To 
check whether these newly gained peptide identifications are valid, 
we compare a representative spectrum (newly gained by using 
AHLFp in PXD014865) to a corresponding reference spectrum 
(Supplementary Fig. 9).

By using transfer learning, we can apply AHLF to other types 
of data. In particular, we apply AHLF to cross-linking data, which 
results in AHLFx (Extended Data Fig. 1, Extended Data Table 1 
and Supplementary Note 7). We use AHLFx on the PXD012723 

Table 2 | Validation on recently published phosphoproteomic data

Dataset Fragmentation / MA / CE Bacc (AHLFp ∣ PhoStar) F1-score (A ∣ P) ROC-AUC (A ∣ P)

JPST000685 CID / ITMS / 35 0.73 ∣ 0.57 0.71 ∣ 0.40 0.83 ∣ 0.66

JPST000703 CID / ITMS / 35 0.71 ∣ 0.55 0.67 ∣ 0.31 0.79 ∣ 0.61

PXD013868 HCD / FTMS / 25 0.87 ∣ 0.93 0.94 ∣ 0.97 0.95 ∣ 0.98

PXD014865 CID / ITMS / 35, HCD / FTMS / 45 0.87 ∣ 0.81 0.88 ∣ 0.77 0.94 ∣ 0.90

PXD015050 CID / ITMS / 35 0.77 ∣ 0.66 0.77 ∣ 0.59 0.87 ∣ 0.76

Performances are shown next to MS settings for fragmentation including collision-induced dissociation (CID) or higher-energy C-trap dissociation (HCD), mass analyser (MA) of an ion trap mass spectrometer 
(ITMS) or a Fourier-transform mass spectrometer (FTMS), and collision energy (CE). Bacc, F1-score and ROC-AUC are shown for AHLFp (A) and PhoStar (P). Bold indicates the best model performance.
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dataset alongside the search results from xiSEARCH. Here  
we filter the spectrum matches based on the AHLFx score  
before applying an FDR threshold of 5% using xiFDR. This 
increases the number of identified cross-linked peptide spectrum 
matches (CSMs) by 11.2% at the optimal cut-off for the AHLFx 
score (Fig. 4b). Interestingly, the local maxima of the AHFLx 
score distribution (Fig. 4b) correspond with PSMs and CSMs 
(Supplementary Fig. 8).

Discussion
We present a novel method for detecting PTMs and cross-linked 
peptides based on their fragmentation mass spectra independent of 
a database search. Our approach showed a high and robust perfor-
mance over a wide range of datasets. We demonstrated that AHLF 
has learned substantial and fundamental fragmentation-related fea-
tures, which was enabled by our strict end-to-end training scheme. 
Interpretations of AHLF were in line with the majority of ground 
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truth peptide identifications. Furthermore, we could use AHLF 
for rescoring and thus improve the number of peptide identifica-
tions. We demonstrated the flexibility of AHLF by applying it to 
cross-linking data, and performed this detection task based on 
spectra alone.

For our approach we developed a specific two-vector repre-
sentation of spectra. This allowed us to use convolutional lay-
ers and to reduce memory consumption without obscuring 
resolution-related information (Fig. 1; see Supplementary Note 9 
for further discussion).

To model fragmentation patterns, we set up a deep neural  
network that we designed to promote learning of long-range  

associations between features (Fig. 1d). Most biochemically related 
peak associations are long-range relations because peaks in a spec-
trum can be a hundred Dalton (Da; atomic mass for a singly charged 
ion) or even multiple hundreds of Da apart (for example several 
phosphosites at different locations of a peptide). Similarly, in our 
two-vector spectrum representation related features can be multiple 
hundreds of steps apart (Figs. 1 and 2). Hence, AHLF falls into the 
category of temporal convolutional neural networks42,43 (discussed 
further in Supplementary Note 10).

AHLF outperforms the current state-of-the-art PhoStar11 on 
phosphopeptide detection on recently published datasets from 
diverse lab environments and experimental set-ups. In particular, 
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we could demonstrate that AHLF is more robust against variables 
such as sample species, type of instrument and dataset size. The lat-
ter is an indirect measure of lab diversity, which is mostly covered 
by smaller datasets where our model was showing a robust perfor-
mance (Table 1). We investigated the influence of the used fragmen-
tation type, mass analyser and collision energy on the performance 
of AHLF per MS run in the PXD012174 dataset (Supplementary 
Fig. 3 and Supplementary Note 11).

Interpretation of AHLF and subsequently investigation of the 
mechanisms behind what AHLF has learned coincided with bio-
chemically reasonable fragmentation patterns. We investigated, after 
AHLF was trained, whether AHLF is picking up reasonable features 
from a given spectrum. Therefore, we derived feature importance 
values on the level of individual spectra for a large collection of 

spectra. We could show that AHLF was using the entire spectrum 
(instead of picking up single peaks) to derive its predictions score, 
as prominent SHAP values are often scattered over the entire m/z 
range (Fig. 2a). Furthermore, important features coincide with pep-
tide fragment ions. This was true for most spectra from the tested 
datasets (Fig. 3a and Supplementary Note 12). We could quantify 
that AHLF was actually learning a suitable abstraction of a given 
spectrum and thus was able to focus on fragment ions despite not 
knowing the peptide sequence in advance.

Following up on this, we computed pairwise interactions between 
any pair of peaks in a spectrum. These interactions point out that 
AHLFp has a fundamental understanding of how phosphopeptides 
fragment, and respective delta masses coincide with commonly 
known neutral losses such as phosphoric acid and combinations 
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thereof (Fig. 3c,d). This is analogous to engineered features that 
are used in Colander10 and Phostar11. By contrast, AHLFp is ad hoc 
learning them from the data, and here we checked whether, after 
training, those coincide with common expert knowledge. For exam-
ple, the fragmentation of a phosphopeptide often involves the loss 
of phosphoric acid H3PO4, which results in a delta mass of around 
98 Da between pairs of ions with a single positive charge13,44 and is 
indicated by ‘*’ in Fig. 3d.

In addition, we could explain 15 of the top 30 highest interac-
tions when matching delta masses with an allowed tolerance of only 
0.01 m/z (Fig. 3b) and up to 26 when choosing a slightly higher toler-
ance of 0.05 m/z (Supplementary Fig. 4). Conversely, the delta mass 
of phosphoric acid undergoing an additional loss of water (a com-
mon phospho-specific loss at around 80 m/z) was not among the 
selected top 30. However, a substantial interaction is recognizable 
at 80 m/z (Fig. 3d). Furthermore, we observe reasonable but rather 
complex combinations of losses for multiple charged ions45,46. As 
these should be less common, we double-checked that by perform-
ing the same kind of analysis but for data that had been acquired on 
an Orbitrap instrument involving a higher-resolution mass analyser 
(Supplementary Fig. 5 and Supplementary Note 13).

We demonstrated a broader applicability of our framework by 
using transfer learning on cross-linking data47 (Supplementary 
Note 14). This is crucial for situations in which training data are 
limited. Similarly, we performed a fine-tuning to further boost per-
formance, for example for a specific instrument. In particular, we 
fine-tuned AHLFp on Q Exactive data (Extended Data Table 2).

Furthermore, we could show that AHLFp improves the num-
ber of identifications when rescoring the search results. Therefore, 
we did a reanalysis of the phosphoproteomic validation data-
sets using MSFragger and performed a rescoring by integrat-
ing AHLFp predictions (see Supplementary Note 15 for further 
discussion). Similarly, we could use AHLFx predictions to filter 
spectra before FDR estimation by xiFDR. At the optimal cut-off of 
AHLFx scores we could maximize the number of identified CSMs 
at 5% FDR (Fig. 4b). Overall, these experiments show that AHLF 
predictions are largely orthogonal to search results alone, and pre-
dictions derived from raw spectra using our deep learning model 
AHLF complement and improve existing MS workflows. Based 
on these rescoring results, we anticipate that the idea of rescoring 
could be further extended by using AHLF in combination with 
its SHAP values (Fig. 2a). The rescoring could be augmented by 
peak-level features because the SHAP values by AHLF would pin-
point parts per individual spectrum that are relevant for inclusion 
in rescoring.

We foresee that our approach will spark diverse future applica-
tions as feature creation is fully integrated in the learning process. 
Possible future applications include the prediction of phosphosite 
localization scores, spectrum identifiability scores, further augmen-
tation of post-search rescoring, biomarker detection, and anomaly 
detection including the detection of non-proteinogenic amino 
acids and uncommon PTMs. This deep learning model is one of 
the first to be able to ad hoc learn the fragmentation patterns in 
high-resolution spectra.

Methods
Public datasets used for cross-validation. For training and testing through 
cross-validation, we used the combined dataset PXD012174 (ref. 4), which contains 
112 individual repositories organized according to 101 human cell or tissue types 
(number of zip files in PXD012174 that contain fragmentation spectrum raw 
files). The individual datasets used phospho-enrichment assays. This combined 
dataset was reanalysed by Ochoa et al.4 and underwent a joint database search 
using MaxQuant48,49 with the following error rates: FDR set to 0.01 at PSM, protein 
and site decoy fraction (PTM site FDR) levels. The minimum score for modified 
peptides was 40, and the minimum delta score for modified peptides was 6. The 
combined search results were taken from the ‘txt-100PTM’ search results, as 
described in PXD012174 (ref. 4). For each spectrum, a label (phosphorylated or 
unphosphorylated) was assigned when the set of PSMs contained exclusively 

phosphorylated or unphosphorylated peptides. In other words, if the set of 
identifications for a given spectrum contained PSMs for both kinds of peptides 
(phosphorylated and unphosphorylated), then we discarded the spectrum. By 
using this strategy, we reduced labelling errors. Overall, this yielded a training set 
that contained 19.2 million PSMs consisting of 10.5 million phosphorylated PSMs 
and 8.7 million unphosphorylated PSMs.

Model training. We optimized the cross-entropy loss using the adaptive learning 
rate optimizer ADAM50 with an initial learning rate of 0.5 × 10−6. AHLFp was 
trained for 100 virtual epochs consisting of 9,000 steps, which was a gradient 
descent step on a mini-batch of size 64. For regularization we used early stopping 
and dropout with a rate of 0.2 on the fully connected layers. We initialized weights 
for all layers using ReLU activation with random weights drawn from a standard 
normal distribution using He correction, and we used Glorot correction for layers 
not using ReLU activation (Supplementary Note 3).

Public datasets used for validation. For validation we used five datasets27–31. For 
each dataset, we used the original search results from MaxQuant alongside the raw 
spectra. In addition, we removed PSMs with scores lower than 40. The detailed 
information is summarized in Supplementary Table 4 for each dataset.

Evaluation of AHLF. We compared AHLFp against PhoStar11, which is currently 
the state-of-the-art method for phosphopeptide prediction based on fragmentation 
spectra. We used PhoStar with default parameters: the m/z tolerance was set to 
10 ppm, the peak-picking depth was set to 10 (per 100 m/z) and the score threshold 
was set to 0.5 for all results shown here. PhoStar is closed-source and not trainable 
by the user. We used the original PhoStar ensemble model parameters11.

For 462,464 spectra from PXD012174 (2.4% of the dataset) PhoStar was 
technically not able to predict a classification score (it provides an error about 
mismatching masses). This also applied to some spectra from the validation data. 
We proceeded by assigning a PhoStar prediction score of 0.5 to these spectra to 
achieve a fair comparison.

To calculate metrics such as balanced accuracy, F1-score and the ROC-AUC, 
we used Scikit-learn51. We set a score threshold to 0.5 to get class labels from the 
predicted continuous binary classification scores. Spearman correlation coefficients 
were calculated by using Scipy52.

In the case of fourfold cross-validation the four resulting models of AHLFp 
were evaluated on their respective holdout dataset (Supplementary Table 3). For 
the benchmark on unseen, recently published data, we used the arithmetic mean of 
prediction scores from the AHLFp model ensemble.

Methods used for explaining AHLF. For the calculation of feature importance 
values we used SHAP35. From the SHAP framework, we used DeepExplainer and 
we set an all-zeros vector as background reference spectrum. In particular, we 
chose SHAP because it allowed us to investigate each spectrum individually (in 
contrast to global methods, which report only aggregated statistics over multiple 
data points). Furthermore, SHAP computes importance values that are additive, 
which means for a given spectrum their sum is supposed to mirror the prediction 
score of AHLF for that spectrum. In our case, the errors between the sum of SHAP 
values and AHLF scores were smaller than 1%. Here we refer to the additive feature 
importance values as SHAP values.

Furthermore, we were interested in absolute SHAP values as we investigated 
both types of spectra (from either a phosphorylated or an unphosphorylated 
peptide) equally. In particular, we were testing whether AHLF can separate 
fragment peaks from noise peaks. Therefore, we assumed that for each spectrum 
the sum of all intensities ∑I ≔ ∑Imatching + ∑Inon−matching consists of intensities that 
are at an m/z that could be matched to a peptide fragment ion and consists of 
other intensities that could not be matched. Furthermore, we defined an intensity 
ratio ≔ ∑Imatching/∑I and analogous SHAP-value ratio ≔ ∑∣s∣matching/∑∣s∣. Note that 
these ratios are bound between zero and one and that any scaling factor cancels 
out such that we could compare the two types of ratios easily. We anticipated 
that our explainability assessment depends on which ions are matching; hence, 
we investigated crucial parameters that potentially alter the ground truth. In 
particular, we systematically looked at the quality of PSMs and also looked at the 
considered ion types as described below.

To have a ground truth on the level of each individual peak within a given 
fragmentation spectrum, we used the PSM information from the search results. 
For our tests using the original set of ions (as matched during the database search), 
we used the MaxQuant output from the MS/MS table (msms.txt file) directly. For 
each PSM, a set of matching peaks including m/z, intensity and ion type has been 
reported. The ion types that were used during the database search contained a, b, 
y, b-H3PO4, y-H3PO4, b-NH3, y-NH3, b-H2O and y-H2O ions. By contrast, for 
our experiments with an augmented set of ion types, we computed in addition the 
theoretical spectrum for each peptide for a given PSM. Therefore, we augmented 
the ion types listed above by including types a-H2O, a-NH3, c, c-dot, c-H2O, 
c-NH3, M, M-H2O, M-NH3, x, x-H2O, x-NH3, z, z-dot and z-H2O. We made sure 
to reproduce the fragment masses that were matched during the original search 
and concatenated the additional calculated fragment ions, yielding an augmented 
theoretical spectrum. To find matching peaks between an acquired and the 
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augmented theoretical spectrum, we used a binary search as implemented by ref. 53. 
For matching peaks we allowed a mass tolerance of either 0.5 Da in the case of an 
ion trap or 20 ppm in the case of an Orbitrap.

For each spectrum we were able to compute two types of ratios as stated 
above (both reflecting a measure of signal versus noise). We assumed that 
these resemble two random variables that are measured on the same spectrum. 
Therefore, we chose the Wilcoxon signed-rank test to compare whether one ratio 
is statistically greater than the other ratio. We chose a significance level of α = 0.01 
for the one-sided signed-rank test and used Bonferroni correction to account 
for the number of thresholds times the number of datasets as the total number 
of hypotheses. Test statistic and P values were computed using the Wilcoxon test 
from Scipy52.

For pairwise interactions we used Path Explain36. Path Explain computes 
interactions between any pair of input features for a deep learning model, in 
our case any pair of peaks within a spectrum. Computationally, this is very 
expensive (more than one hour per spectrum). We excluded spectra with more 
than 500 peaks (Path Explain computations increase quadratically with number 
of peaks). We selected a single run, ‘18O_5min_A_2b’ from the HEK293 dataset. 
Furthermore, we selected spectra from identified phosphorylated peptides (by 
MaxQuant) and required AHLF to correctly predict them; any other spectrum was 
discarded. This yielded 193 spectra for which we computed pairwise interactions. 
In the case of the Orbitrap run, we used ’5_min_M_a_QE.raw’ from the HeLa 
dataset. Again we kept spectra for identified phosphorylated peptides only, 
resulting in 504 spectra for which pairwise interactions are calculated. In any 
case, we kept positive interactions as we were interested in the positive class and 
the responsible pairwise interactions. In the case of the Orbitrap run, we used the 
Python package ‘ms-deisotope’ to de-charge and de-isotope the spectra. For each 
isotopic envelope (groups of peaks are summarized as one mono-isotopic peak) we 
averaged over the pairwise interactions by using the arithmetic mean.

To identify the interactions and assigned neutral losses, we searched delta 
m/z by including any combination of [0, 1] of S/T/Y, [0, +1, +2] of phosphoric 
acid (abbreviated with ‘*’), or [−2, −1, 0, +1, +2] losses of ammonia (NH3) and/or 
[−2, −1, 0, +1, +2] losses of (H2O) subject to charges between +1 and +4. These 
combinations resemble 2,352 different delta m/z. In the case of the Orbitrap data, 
the number of hypotheses was reduced to 588, because there was no need to 
account for different charge states. In the main text we refer to a peak-matching 
equivalent tolerance of 0.01 m/z. As delta masses are matched, we multiplied this 
tolerance by 

√

2; that is, according to Gaussian error propagation for a difference 
of mz1 − mz2, the effective error is ϵ =

√

ϵ21 + ϵ22 , such that we used 0.01 ×

√

2 as 
apparent tolerance when matching delta m/z.

Transfer learning on public cross-link data. For training and testing we used 
public data from JPST000916 (DSS as cross-linker) and for evaluation we used 
JPST000845 (BS3 as cross-linker) as holdout set32,33. Raw files were converted to 
MGF (Mascot generic format) and after m/z recalibration were searched with 
xiSEARCH54. As labels we used CSMs from xiSEARCH results as positive class 
(at 5% CSM FDR) and the reported linear PSMs as negative class (5% PSM FDR). 
During transfer learning we took our pretrained models AHLFp-α–AHLFp-δ 
and continued training on JPST000916; we adjusted the learning rate to 0.0001 
and increased the dropout rate accompanying the dense layers to 0.5. All other 
hyperparameters were kept the same as for the original training of AHLF. For the 
baseline models we used a fully connected network with 2, 3, 4, 5 or 6 layers, with 
32, 288, 544, 800 or 1024 units, and with a dropout rate of 0.0, 0.2 or 0.5 using 
ADAM with initial learning rates of 1.0 × 10−3, 0.5 × 10−3, 1.0 × 10−4, 0.5 × 10−4 or 
1.0 × 10−5. We randomly sampled 50 parameter constellations and trained each 
three times. From the resulting 150 training runs we evaluated the best four runs. 
This was repeated for the feature vector (m/z′, I) and the two masked-out versions 
(_, I) and (m/z′, _), where respective values were set to zero. During transfer 
learning and baseline training we used early stopping on the test-set split.

Spectrum representation of AHLF. With the help of our particular spectrum 
representation we exploited the sparsity of centroided spectra. A centroided 
fragmentation spectrum is a list of peaks that are tuples of m/z and intensity I. If 
the sparsity matches the segment size (meaning exactly one peak per segment) 
this operation is reversible as illustrated in Fig. 1a. In other words, the original 
peaks list can be recovered from our two-vector representation. To achieve a truly 
loss-less conversion we could exploit the sparsity of centroided spectra and adjust 
the segment size accordingly. Theoretically, the chance of two peaks randomly 
falling into the same segment is marginal. A peaks list contains l total number of 
peaks. Typically, an MS/MS spectrum has hundreds, or in extreme cases up to a 
few thousands, of centroided peaks l and a dense vector matching the instrument 
resolution has easily multiple hundreds of thousands of entries b. Assuming 
uniformly sampling of values for m/z, the probability of randomly choosing an 
m/z (within the resolution) that has been occupied already is given by 1/(b − l). It 
is known that m/z displays dead spots (for example, combined histogram of m/z 
from all peaks lists). Hence, m/z is usually not uniformly distributed. However, the 
opposite case of a fragmentation spectrum in which all peaks are clumped together 
is usually discarded during quality assessment. These poorly fragmented spectra 
are not very informative.

In Results, we describe a strategy of how to generate our proposed spectrum 
representation from a given peaks list (Fig. 1a). An alternative but equivalent 
strategy is to first populate an all-zero vector (of size window-range times 
instrument-resolution) with peaks, and then apply the maximum and the argument 
maximum within small mass segments of fixed size (Fig. 1a). Furthermore, our 
spectrum representation reflects a regular grid, which is equally spaced and with 
fixed connectivity of m/z values. This makes a spectrum compatible with a network 
that uses convolutional or recurrent layers (comparable to applications including 
an image or a time series with constant time steps).

To handle the amount of spectra, especially for feeding a graphics processing 
unit with training samples, we set up a custom pipeline facilitating the conversion 
of peaks lists into the two-vector representation. It also performs common 
preprocessing steps55, for example ion current normalization that divides intensities 
by the sum of squared intensities. Our preprocessing pipeline is implemented 
in Python, largely integrating Pyteomics56,57 and TensorFlow58. The combined 
preprocessing and training pipeline can be found as part of our code repository. 
Our pipeline accepts MGF files as input files. Spectra from raw files were 
centroided and converted to MGF files by using ThermoRawFileParser59.

Details about particular choices for the model architecture of AHLF. In Results, 
we illustrate the model architecture of AHLF (Fig. 1d). We show how a single 
output (Fig, 1d, black arrow at centre) can receive information from any input 
(black arrows) via a collection of paths (black solid lines) in the block of dilated 
convolutions. The block of dilated convolutions facilitates a receptive field that 
spans the entire feature vector. The block has nested stacks of convolutional layers 
and 64 filters per layer; hence, the actual model complexity is not fully captured 
by the simplified illustration here (blue inlay). On the right in Fig. 1d we compare 
what is drawn versus what was implemented (in parentheses). In addition, we 
illustrate how a single output can learn to reflect a specific pair of ions (pink path). 
Associations between more than two input features can be learned by the model, 
but are not illustrated here. Furthermore, we introduced skip connections by using 
convolutions with kernel size of 1 that are added to the stacked convolutions (blue 
inlay). This allows for inputs to be passed to the output (yellow path).

A block of dilated convolutions is commonly called a temporal convolutional 
neural network (TCN)42. In a TCN, the receptive field grows exponentially, and 
therefore the gradient computation only needs log(distance between features) 
steps. We preferred this over, for example, a transformer architecture60, even 
though the latter facilitates gradient computation that is independent of the 
distance between two features. However, it requires keeping a self-attention 
matrix, which in turn scales quadratically with input size. By contrast, for a TCN 
the computational complexity of convolutions scales linearly with the input size60. 
Hence, in the case of AHLF we chose a TCN over a transformer.

In our TCN, we used padding that conserves the size between the input and 
the output layer (‘same’-padding). By contrast, TCNs are also usually used in 
conjunction with ‘causal’-padding, for example the ‘Wavenet’ uses causal-padding61. 
This is because the latter is modelling audio signals over time, and feedback from 
the future to the past is eliminated by causal-padding on purpose. In the case of a 
fragmentation spectrum, the peptide fragmentation happens from both ends of a 
peptide and a spectrum is bi-directional in that sense; hence, we decided to stay 
with same-padding. An output feature is able to receive information from the left 
and the right part of the previous layer (Fig. 1d). The TCN block is followed by 
fully connected layers. The final prediction is facilitated by a sigmoid as activation 
function, which outputs a score between zero (unphosphorylated) and one 
(phosphorylated).

MSFragger searches for the reanalysis of validation datasets. For each run 
from the validation datasets (JPST000685, JPST000703, PXD013868, PXD014865 
and PXD015050) we assigned a prediction score to each MS/MS spectrum 
using AHLFp-α–AHLFp-δ. Note that PXD013868 is an extraordinarily large 
dataset, which contains 30 tissue types of Arabidopsis thaliana. Hence, for 
this reanalysis we performed searches for runs from the seed tissue using 
enrichment by immobilized metal affinity chromatography (as representative 
for the other tissues in PXD013868). We used MSFragger (version 3.3) 
and searched the spectra from JPST000685 against UP000244005_3197.
fasta, JPST000703 against UP000006548_3702.fasta, PXD013868 against 
UP000006548_3702.fasta, PXD014865 against UP000000589_10090.fasta and 
PXD015050 against UP000000589_10090.fasta. Finally, for true FDR calculation, 
we searched spectra of PXD014865 against the target species (Mus musculus, 
UP000000589_10090.fasta) concatenated with the trap proteome (Arabidopsos 
thaliana, UP000006548_3702.fasta). These proteomes were downloaded from 
UniProt https://www.uniprot.org/) in August 2021. For the searches, the minimum 
peptide length was set to 7 and maximum peptide length was set to 50, and up 
to two miscleavages were allowed. Oxidation of methionine, protein N-terminal 
acetylation, and phosphorylation of serine, threonine and tyrosine were set as 
variable modifications. Up to three variable modifications per peptide were 
allowed. Cysteine carbamidomethylation was set as a fixed modification. Fragment 
mass tolerance was set to 20 ppm (for FTMS runs) or 0.5 Da (for ITMS runs).

For the synthetic phosphopeptide library PXD000138 (ref. 62) we adapted 
the search parameters from ref. 62. The HCD runs from the library were 
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searched against the International Protein Index (IPI) human proteome and 
the concatenated synthetic peptide library (as provided by ref. 62), allowing 
tryptic peptides of length between 9 and 27 with up to four miscleavages and 
with unmodified cysteine, up to three oxidations (methionine) and up to one 
phosphorylation (serine, threonine or tyrosine) per peptide.

All searches were open searches with a precursor window of size (−150 Da, 
+500 Da), and the localize_delta_mass parameter was enabled. We allowed 
MSFragger to report the top-10 scoring PSMs per spectrum. Results by MSFragger 
are exported as Percolator input (PIN) files and forwarded to Percolator for 
postprocessing (see below).

Rescoring and FDR estimation for the reanalysis of validation datasets. From 
MSFragger we exported PIN files. These PIN files contain features as specified 
by MSFragger. We added to the PIN files a feature column containing a Boolean 
that reflects whether the candidate peptide contains a phosphorylation or not. In 
addition, we included four feature columns according to predictions by the model 
ensemble AHLFp-α–AHLFp-δ. The original MSFragger features in combination 
with the Boolean feature are referred to as PIN files without using AHLFp 
(baseline), whereas all aforementioned features together are considered as PIN 
files with using AHLFp. We ran Percolator (version 3.05.0) using unity-length 
normalization with a target FDR of 1%.

FLR estimation for the reanalysis of validation datasets. For false localization 
rate estimation we used the Percolator output target PSMs (with or without AHLFp 
predictions) from above. These were filtered by a PSM-level FDR of 1% and then 
used as input for LuciPHOr2 (version 2.1). According to each dataset, we used 
either the CID model or the HCD model of LuciPHOr2. Furthermore, the MS/MS 
tolerance was set to 20 ppm (for FTMS runs) or 0.5 Da (for ITMS runs).

Quantification of the true FDR and true FLR. For the calculation of the true 
FDR we counted peptides from the trap species (in the case of PXD014865) as 
false positives. In the case of PXD000138, peptides from the IPI human proteome 
(but not included in the set of synthetic peptides) were counted as false positives. 
Subsequently, the true FDR was calculated as the number of these false positives 
divided by the number of all identifications. For the calculation of the true FLR, we 
counted peptides with occupied sites that are different from the synthesized ones 
as false positives, and subsequently the true FLR was calculated as the number of 
these false positives divided by the number of all identified phosphopeptides.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Phosphoproteomic data were downloaded from public repositories PXD012174 
(ref. 4), JPST000685 (ref. 27), JPST000703 (ref. 28), PXD013868 (ref. 29), PXD014865 
(ref. 30), PXD015050 (ref. 31) and PXD000138 (ref. 62). In the case of cross-linking 
data, files were downloaded from public repositories JPST000916 (ref. 32), 
JPST000845 (ref. 33) and PXD012723 (ref. 34).

Code availability
An open-source implementation with command-line instructions is publicly 
available (under MIT licence) at https://gitlab.com/dacs-hpi/AHLF (ref. 63) and 
includes four independently trained models. In addition, the code repository allows 
fine-tuning of AHLF as well as training from scratch on third-party or user-specific 
data.
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Extended Data Fig. 1 | AHLF detects cross-linked peptides via transfer learning. A: evaluation on the test set for the DSS cross-linker and B: holdout set 
for the BS3 cross-linker. Receiver operating characteristic of AHLFx (orange) compared to three fully connected networks as baselines (green, yellow and 
blue) and a random baseline with ROC-AUC=0.5 (dashed line). For each, the top-4 training outcomes are shown and the best is highlighted respectively. 
For each best model, ROC-AUC and optimal F1-score are summarized in the legends.
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Extended Data Table 1 | AHLFx detects spectra of cross-linked peptides as validated on PXD012723. ROC-AUC, F1-score and Precision at Recall of 0.95 
are shown for AHLFx and fully connected networks as baselines.
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Extended Data Table 2 | Performance of an instrument-specific AHLFp model that was fine-tuned for Q Exactive data. Metrics are based on predictions 
for PSMs that have the stated minimum Andromeda score, that is higher Andromeda scores reflect smaller labeling errors.
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